

Reg. No.:												
-----------	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code: X 60442

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2020 Third Semester

Electronics and Communication Engineering
EC 2204/EC 35/EC 1202 A/10144 EC 305/080290015 – SIGNALS AND SYSTEMS
(Common to Biomedical Engineering)
(Regulations 2008/2010)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions

PART - A (10×2=20 Marks)

- 1. Determine whether the following signal is energy or power signal. And calculate its energy or power: $x(t) = e^{-2t} u(t)$.
- 2. Check whether the following system is static or dynamic and also causal or non-causal: y(n) = x(2n).
- 3. State Dirichlet's conditions.
- 4. Give the equation for trigonometric Fourier series.
- 5. Determine the Laplace transform of the signal $\delta(t-5)$ and u(t-5).
- 6. Determine the convolution of the signals $x[n] = \{2, -1, 3, 2\}$ and $h[n] = \{1, -1, 1, 1\}$.
- 7. What is the z transform of δ (n + k)?
- 8. What is aliasing?
- 9. Write the nth order difference equation.
- 10. Write the state variable equations of a DT-LTI system.

PART - B

 $(5\times16=80 \text{ Marks})$

- 11. a) Determine whether the systems described by the following input-output equations are linear, dynamic, casual and time variant: (4×4=16)
 - i) $y_1(t) = x(t-3) + (3-t)$
 - ii) $y_2(t) = dx(t)/dt$
 - iii) $y_1[n] = n x[n] + bx^2[n]$
 - iv) Even $\{x[n-1]\}.$

(OR)

- b) A discrete time system is given as $y(n) = y^2(n-1) = x(n)$. A bounded input of $x(n) = 2\delta(n)$ is applied to the system. Assume that the system is initially relaxed. Check whether system is stable or unstable.
- 12. a) i) Find the Fourier transform of $x(t) = \sum_{n=-\infty}^{\infty} x(t-nT)$. (6)
 - ii) Prove the time scaling property of Fourier transform and hence find the Fourier transform of $x(t) = e^{-0.5t} u(t)$. (6)
 - iii) Derive the relation between trigonometric Fourier series and exponential Fourier series. (4)

(OR)

- b) i) Find the Laplace transform of $[4e^{-2t}\cos 5t 3e^{-2t}\sin 5t]u(t)$. (8)
 - ii) Find the inverse Laplace transform of $X(S) = \frac{1 + e^{-2s}}{3s^2 + 2s}$. (8)
- 13. a) i) Define convolution integral and derive its equation. (8)
 - ii) A stable LTI system is characterized by the differential equation.

$$\frac{d^2y(t)}{dt^2} + 4\frac{dy(t)}{dt} + 3y(t) = \frac{dx(t)}{dt} + 2x(t)$$

Find the frequency response and impulse response using Fourier transform. (8)

(OR)

b) i) Draw direct form, cascade form and parallel form of a system with system

function
$$H(s) = \frac{1}{(s+1)(s+2)}$$
. (8)

ii) Determine the state variable description corresponding to the block diagram given below. **(8)**

- 14. a) i) State and prove sampling theorem for low pass band limited signal and explain the process of reconstruction of the signal from its samples. (10)
 - ii) State and prove any two properties of DTFT. **(6)**

(OR)

- b) i) Find the z-transform of the sequence $x(n) = \cos(n\theta) u(n)$. **(8)**
 - ii) Determine the inverse z-transform of the following expression using partial fraction expansion: **(8)**

$$X(z) = \frac{1}{\left(1 - \frac{1}{3}z^{-1}\right)\left(1 - \frac{1}{6}z^{-1}\right)}, ROC: |z| > \frac{1}{3}.$$

- 15. a) i) Obtain the impulse response of the system given by the difference equation $y(n) - \frac{5}{6}y(n-1) + \frac{1}{6}y(n-2) = x(n)$ (10)
 - ii) Determine the range of values of the parameter "a" for which the LTI system with impulse response $h(n) = a^n u(n)$ is stable. **(6)**

(OR)

b) Compute the response of the system:

$$y(n) = 0.7y(n-1) - 0.12y(n-2) + x(n-1) + x(n-2)$$
 to the input $x(n) = nu(n)$. Is the System stable? (16)